
Desktop Engineering magazine, Oct. 1999

A P P L I C A T I O N

Terry Leeper

S
ometimes in a test system it is de-
sirable for more than one comput-
er program or process to make use
of an instrument at the same time.

This can present difficulties.
For example, the operating system in

this article (I assume a Windows OS) will
be time-slicing between the processes.
It is therefore possible that one process
could be in the “middle” of something
and be interrupted by another. This
problem is relatively easy to solve by
locking the instrument using an OS syn-
chronization object, such as a critical
sections or mutexs.

Another problem arises because many
instrument drivers are DLLs (dynamic
link libraries). It is very easy when writ-
ing instrument drivers to get the state
partially held in DLL memory. Since sep-
arate processes do not share memory, it
is possible that one process will have a
different state from another. This diffi-
culty is not so easy to solve because test
system designers do not control the in-
strument driver’s contents.

Here’s how you can deal with this
problem using an out-of-process COM
(component object model) server.

THE PROBLEM DESCRIBED
If instrument information is kept in DLL
memory, it is possible for each of the two
processes to have different states for the
instrument (see Figure 1, right). This can lead
to unexpected test system failure. “Wrap-
ping” the driver DLL in an out-of-process
or local COM yields what is shown in
Figure 2 (right). In this case, only one in-
stance of the DLL exists, so all processes

that use the instrument access it through
the same instance.

Since all accesses to the server cross
process boundaries, it is not surprising
that the primary issue for a local COM
server is performance. While this article
will not explore this issue broadly, here
is one example to give you a flavor. On

NT 4 using a 200MHz Pentium Pro pro-
cessor it took about 250 microseconds
to pass 20 bytes of data to the server. If
this performance degradation is accept-
able for your application, then the COM
server is an excellent way to proceed.

Another difficulty facing system de-
signers is that a driver may have many
functions. Consequently, wrapping the
entire driver can be a formidable task.
However, a specific application may use
only a small percentage of the driver’s
API. Thus, only these APIs need to be
mapped into the wrapper.

COM IN A NUTSHELL
COM is often presented in a series of
complex pieces. This can be simplified
for the case of an instrument server,
where your goal is to cut through the
complexity to give a how-to approach.

COM is based on the notion of an ob-
ject. The object makes itself known to
the world through interfaces. Thus, an
object exposes one or more interface.

Interfaces in turn are made up of
methods. Methods are functions. So, the
way C++ uses a COM object is that a
pointer is obtained to one of its inter-
faces. It is through this pointer that
methods (i.e., functions) are called.

In NT a COM object is registered in
the registry. Each object is given a
unique identifier called a Universally
Unique Identifier (UUID) or Globally
Unique Identifier (GUID). This is how
the COM system finds an object. Fortu-
nately, the details of this are performed
by the development environment.

A COM interface may contain any
number of methods. There are certain
low-level methods required by COM that
must occur in any interface. You need

Here’s how to use an out-of-process COM server to encapsulate
instrument driver DLLs to avoid conflicts when designing test systems.

Figure 1: Two processes using the same instrument

with a DLL driver.

Figure 2: Two processes using the same instrument

through a local COM server.

WITH COM
Encapsulate Instrument
Driver DLLs

not be concerned with these required
methods because the development en-
vironment automatically handles them.
Thus, from the server designer’s point of
view, all that you need to do is create
the necessary methods to expose the de-
sired driver functions.

INTERFACE DESCRIPTION LANGUAGE
Before delving into the server details,
there are some COM server issues that
need to be covered.

The server is a separate process. A pro-
gram that uses a server is called a client
or container. Since separate processes do
not share memory space, you need some
methodology to take function parameters
across process boundaries. In COM this
methodology is called marshaling. Mar-
shaling is really nothing more than copy-
ing parameters from one process into or
from another process. This is accom-
plished by a DLL called a proxy, which is
automatically generated by the devel-
opment environment.

COM learns about an object through
its type library. The type library is creat-
ed from the Interface Description Lan-
guage or IDL, a description of a COM
object that the C++ compiler and other
applications, such as Visual Basic, use.
The proxy is built using the information
in the IDL file. IDL is a text language.
It’s compiled into a type library using
the MIDL compiler.

Your development environment han-
dles most IDL details; however, server
designers need to know enough IDL to
enter the parameters to server methods.
Listing 1 at the top of this page shows a
typical method entry in IDL.

A series of comma-separated items
inside brackets precede a method’s pa-
rameters. A variety of attributes tell COM
about the parameters. IN, for example,
instructs COM to copy the data in from
the client process into the server process.

OUT is the reverse process; i.e., OUT
copies the data out from the server
process into the client process. IN,OUT
has data going both directions.

The Retval parameter will look like
the return value of the function. When
it is used in C++ or Visual Basic, Retval
will appear as if the parameter does not
even exist in the function, but is the re-
turn value of the function. Only [OUT]
parameters can be tagged as Retval.

An input or output array parameter
is declared as a pointer (such as short).
You communicate the array size to
COM by having size parameters in the
method and then using a special
attribute, size_is, to tell COM which
parameter holds the size.

Suppose you have a short array of
type input and another of output, such
as in Listing 2 above. Here, size1 tells
COM how big array1 is, and size2 tells
COM how big array2 is. COM can use
these to copy the arrays from one
process to the other. Note that size_is
requires a parameter that is either [in]
or [in,out] and that for the output array,
array2, the client should allocate the ar-
ray and pass its size in *size2 .

It is important to remember that
*size2 must be set to the number of
items put into array2 before returning
from the method.

COM supports the standard types
needed by an instrument server. In par-
ticular, it supports shorts, longs, dou-
bles, and pointers to these types. How-
ever, strings, such as char *, are more
complex. Visual Basic has its own string
type called a BSTR, and COM pretty
much adopted it.

BSTRs are formatted as two-byte char-
acters (i.e., wide character), with the length
encoded inside the string at its beginning.
A pointer to a BSTR will point just past
the length. I would recommend that you
handle all string data as BSTRs in COM.

Many C++ classes have been devel-
oped to deal with BSTRs. In my opinion,
none of these are any easier than the
standard Windows API . (For a list of rele-
vant APIs, see “Windows APIs,”at the end of
this article.) One advantage of BSTR ar-
guments is that size parameters are not
needed.

THE BASIC SERVER
You build your server with Microsoft Vi-
sual C++ using the ActiveX Template Li-
brary (ATL). This article assumes version
6.0 of the C++ compiler and 3.0 of ATL.

To create a server project from the Vi-
sual C++ development environment, se-
lect New from the File menu and then
select the Projects tab. Choose a project
type of ATL COM AppWizard. In the
right pane, select a path where you want
the project to go then put in a name for
your project (atlserver is used in this ex-
ample). Press OK. Select the server type
as executable, then press Finish (and OK
from the info dialog) and the project will
be created.

To continue with the project, you need
an I/O card or instrument. For example
purposes, we’ll make up a simple digital
I/O card with two 8-bit ports. Suppose
the API in Listing 3 (above) were exported
by the card’s driver. These APIs are what
you need to expose from the COM serv-
er as methods.

In the Visual C++ development en-
vironment, select the tab marked Class-
View from the left pane. Right-click
upon the atlserver line, and you should
see a menu that includes New ATL Ob-
ject. Selecting New ATL Object should
bring up a dialog box with Simple Ob-
ject highlighted in its right pane. Now,
press the Next button. This brings up a
tabbed dialog with two tabs, Names and

Desktop Engineering magazine, Oct. 1999

A P P L I C A T I O N

Listing 1: A typical method entry in IDL.

[id(1), helpstring(“method SetPortDirection”)] HRESULT SetPortDirection([in]
short portnum,[in] short direction);

Listing 2: A short array of type input and another of output.

[id(1), helpstring(“method method”)] HRESULT method([in] short size1,[in,size_is(size1)]
short * array1, [in,out] short * size2,[out,size_is(*size2)]short *array2);

Listing 3: API’s exported by the card’s drivers.

SetPortDirection(short portnum, short
direction)

portnum = 0 or 1
direction 0=Input, 1=Output
GetPort(short portnum, short * value)
portnum (0 or 1)
value: value of port

SetPort(short portnum, short value)
portnum (0 or 1)
value: value to set port to.

Attributes. In the Names tab at the Short
Name edit box fill in the name for your
digital I/O card object. SimpDIGIO is
the name I’ll use.

Now select the Attributes tab. The
Threading Model should be Apartment,
the interface dual, and No should be se-
lected for aggregation. These should be
the default values.

Select Support IsupportErrorInfo for
richer error propagation. Press OK to
make the object.

At this point you have a complete
server. It has an object named SimpDI-
GIO with an interface named ISimpDI-
GIO. The next step is to add the methods
for the specific digital I/O functions.

To do this, return to the ClassView
pane and click upon the “+” box next to

the atlserver name. This will open the
server object. Right-click over the “spoon”
beside the ISimpDIGIO interface and se-
lect AddMethod from the menu it acti-
vates. This brings up a dialog box.

Enter the first method SetPortDirec-
tion for the methods name. Now for IDL.
In the parameters box type:

[in] short portnum,[in] short direction
This sets up the method SetPortDi-

rection to have two input parameters.
Entered SetPort in similarly.

The GetPort takes an out parameter, so
enter its parameters:

[in] short portnum,[out,retval] short * value

Note the use of Retval. When you look
at this object through a browser such as

in Visual Basic, this method will appear to
have only the portnum parameter. Value
will be the return value of the function.

Open the file SimpDIGIO.cpp. At the
bottom should be the three methods just
created. Adding code to them will finish
the server. For example, add SetPortDi-
rection in the hypothetical card’s driver:

STDMETHODIMP CSimpDIGIO::SetPort
Direction(short portnum, short direction)

{
SetPortDirection(portnum,direction); //our

hypothetical driver entry point

return S_OK;
}

That’s all there is to it.

BUT WHAT ABOUT ERRORS?
Error handling is illustrated in Listing 4
(above, left). The ATL system provides the
Error routine. E_FAIL is a general fail-
ure code for a method.

Do the same for the other two entry
points and your server is done. To ex-
periment further, comment out the calls
to your hypothetical I/O card. Now the
server should compile and link.

As previously mentioned, the proxy
is a DLL program created to allow COM
to do its magic. The proxy contains all of
your server’s entry points. A call into
the proxy entry point will be shunted
to COM, which will marshal the para-
meters and call the server through a re-
mote procedure call mechanism.

MIDL compiler creates the proxy
when you build the project, but it needs
to be installed. To do this, go to your
Projects subdirectory. Run the following
command from a DOS prompt: nmake—
atlserverps.mk. This will both make and
register the server in the NT registry. The
proxy can be registered directly (if it has
already been made) by the command:
regsvr32 atlserverps.dll. Run the make
command every time you add a method
or change parameters.

The server is ready to use. From Visu-
al Basic go to the project->references
menu. Select the atlserver type library
from the choices.

Here’s a fragment of Visual Basic code
that would use the server:

Dim x as new ISimpDIGIO
s.SetPortDirection 1

To see how Visual Basic will handle

Desktop Engineering magazine, Oct. 1999

A P P L I C A T I O N

Listing 4: An example of error handling.

STDMETHODIMP CSimpDIGIO::SetPortDirection(short portnum, short direction)
{

if(!SetPortDirection(portnum,direction))
{

Error("The driver entry point SetPortDirection failed");
return E_FAIL;

}

return S_OK;
}

Listing 5: An example of using smart pointers.
#include “stdafx.h”

#import “..\atlserver\atlserver.tlb”//the path should be to YOUR server’s subdirectory
using namespace ATLSERVERLib;

int main(int argc, char* argv[])
{

CoInitialize(NULL);

{
try()
{

//here is where your program would use the server
ISimpDIGIOPtr pI(__uuidof(SimpDIGIO));

pI->SetPortDirection(0,1); //use the pointer
}
catch(_com_error cerr)
{

wprintf(L”Got error %d\n”,cerr.Description());
}

}
CoUninitialize();

}

server errors go into the SetPortDirec-
tion in your server C++ project and
make SetPortDirection look like:

STDMETHODIMP CSimpDIGIO::SetPortDi-
rection(short portnum, short direction)
{

Error(“The driver entry
point SetPortDirection failed”);

return E_FAIL;
}

Rebuild the server and run it in Visu-
al Basic to see how errors are handled.

To use the object in Visual C++ create
a new “hello world” console app using
the Win32 Application project type from
the Visual C++ project tab.

To use COM objects in C++ you want
to use smart pointers; i.e., pointers that
know about your object (see Listing 5,
previous page).

The Import command is given the
path to the type library, which will be
in the directory where you built the
server. This is how C++ gets at the in-
formation about the server object. “Us-
ing namespace” results from the fact
that #import will create a namespace
that is the name of the type library (e.g.,
look in the server’s .idl file for the
library statement).

CoInitialize is part of the COM system
and must be called before your program
can reference anything in the COM sys-
tem. The smart pointer is called pI. The
purpose of the redundant looking block
in this program is to set the scope for pI.
It goes out of scope—causing its de-
structor to execute—before CoUninitial-
ize is called (nothing in COM can be ac-
cessed after that call).

Take note of the name given to the
pointer type by the #import directive:
ISimpDIGIOPtr. The #import simply
takes the name of the interfaces it finds
in the type library and appends Ptr.
The __uuidof(SimpDIGIO) tells COM
which object to use. For example, Sim-
pDIGIO is the name given to the object
and ISimpDIGIO is the interface it ex-
poses. One or more object can expose
an interface, which is why the object’s
name needs to be specified here.

Notice that Visual C++ will know
about your object when you use pI.

The try recover block shows you how
to get at errors generated by the server.

CONCLUSION
In short, that’s what you need to know
to create a COM local server to surround

an instrument driver DLL. This allows
for a single access to an instrument with
a driver that is a DLL. If any instrument
state is kept in the DLL, the COM server
will keep the state correct for all process-
es that access the instrument.

Terry Leeper holds B.S. and M.A. degrees inmathe-
matics and has worked for Hewlett-Packard for 18
years. You can contact him through e-mail c/o de-ed-
itors@helmers.com.

Desktop Engineering magazine, Oct. 1999

A P P L I C A T I O N

Windows APIs
Many C++ classes have been developed to deal with BSTRs. In my opinion none of these
are any easier than the Standard Windows API. Listed below are the relevant API. —TL

BSTR SysAllocString(wchar * string)—Create a BSTR from a null terminated wide char-
acter string. Use: BSTR s = SysAllocString(L”hello”); //
Note:The L modifier makes “hello”a wide character string.

Note—This functions attaches a null byte to the string

BSTR SysAllocStringByteLen(LPCSTR str, unsigned int len)—str is a pointer to a null ter-
minated string

(char *) or NULL—Leaves the string uninitialized. Allocates a BSTR of length bytes.
Use: BSTR s= SysAllocStringByteLen(NULL,100); //
which creates a BSTR 100 bytes long (but only 50 wide chars long).

void SysFreeString(BSTR s)—Free a string allocated with one of the above.

size_t wcstombs(char *mbstr, const wchar_t *wcstr, size_t count)—A C runtime library routine
to convert null terminated wide (2-byte) char strings to char * strings. Note that this API
handles NULL bytes similar to strncpy.

size_t mbstowcs(wchar_t *wcstr, const char *mbstr, size_t count);—The reverse of the above.

For example to convert a char buffer of data , which may contain null bytes, 1000 items
long into a BSTR do the following:

BSTR S;

S = SysAllocStringByteLen(NULL,2000);//byte len = 2* # of wide chars
for(int I=0; I<1000; I++) S[I]=data[I];

To convert a C style string to a BSTR do:

BSTR S;
WCHAR * buff = new WCHAR[strlen(data)];

mbstowcs(buff,data,strlen(data));
S=SysAllocString(buff);

delete [] buff;

Copyright, Desktop Engineering
1999. This article appeared in
the Oct. ’99 issue of Desktop
Engineering magazine, a Helmers
Publication. It may not be
copied or stored in any form
without the express permission
of the publisher.

